er nope – brighter latare A measure of the amount of starting materials that end up as useful products Atom economy = Relative formula mass of desired product from equation x 100 Sum of relative formula mass of all reactants from equation High atom economy is important or sustainable development and economic reasons | argon | | Gas
Nitrogen | | Percentage ~80% | at | Pro | Al | lgae and pla | ants | | • | produced the oxygen that is in the atmosphere, through $6CO_2 + 6H_2O \rightarrow C_6H_1O_6 + C_6CO_2 + 6H_2O \rightarrow C_6H_1O_6 + C_6CO_2 + 6H_2O \rightarrow C_6CO_2 + 6H_2O_6 + C_6$ | | | | | ,, | | | | | |--|---|---------------------|---------------------------------|---|--------------------------|-----------------------------|-------------------|---|----------------|----------------|---|--|-----------------------|-------------|--|---|--|--------------------|--|--|--| | | | Oxygen | | ~20% | atmosphere | Proportions of gases in the | | | | | photosynthesis. | | | | σεο ₂ · στι ₂ ο γ ε ₆ τι ₁₂ ο ₆ τ σο ₂ | | | | | | | | | oxygen | Argon | | 0.93% | phe | in th | | Oxygen in t | he | Firet | Over the next billion years plants evolved to gradually produce more oxygen. This gradually | | | | | | • | | | | | | nitrogen | | Carbon
dioxide | | 0.04% | re | of T | | atmosphe | | 11130 | years ago. | | | | | | that enabled animals to | | | | | | Volcano
activity
1 st Billion | ago there was intense (mainly | | | ased gases CO ₂) that to early here and water | The Ear |]\ [| \ [| How c
dioxide d | arbon | arbon | | Reducing carbon dioxide in the atmosphere | | ae c | lev pho | | hese gradually reduced the carbon dioxide vels in the atmosphere by absorbing it for hotosynthesis. | | | | | | years | volcanio
activity | , | vapour t | hat condensed
the oceans. | th's ear | | | npositio | | | | Formation of | out o | of tl | are made
he remains | botto | m of oceans. Over millions of y | ears | | | | | Other gases | Released f | rom
c | released
building
atmosph | was also
, gradually
up in the
ere. Small | Earth's early atmosphere | | at | tmosph | ere | | | sedimentary rock
and fossil fuels | s ma | tte
er m | ological
r, formed
nillions of
ears | coal, o | oil, natural gas and sedimentary
edimentary rocks contain carbo | y rocks. | | | | | | eruption | | | ons of ammonia
hane also
d. | nere | | Cher | AQA GC
mistry c | of the | \ | | CO ₂ and meth | 2020 | 1 | Greenhou | ise gas | Radiation from the Sun enters the Earth's atmosphere and reflects off of the Earth. Some of this radiation is re-radiated back by the atmosphere to the Earth, warming up the global | | | | | | Reducing
carbon
dioxide in | When th
oceans forr
carbon dio | ne
med, | precipita
sedimen | ned carbonate
ites, forming
ts. This reduced
s of carbon | | atmosphere Common | | | | | | as greenhou
gases | | | Carbon diox
water vapo
and metha | ur | maintain temperatures on Earth in | | | | | | the
atmosphere | dissolved in | | dioxide i
atmosph | | | | iospł
Iluta | heric
ants | | Carb | on f | ootprints | | | Radiation from the Sun enters the | | | | | | | | Atmospl | neric pollut | | | Prope | | | effects
Ilutan | | gases
cycle | emit
of a p | ted o | over the full life
uct/event. This
ed by reducing | Global climate change | | The greenho
effect | use | of the Earth. Some of this radi
re-radiated back by the atmo | ation is
sphere | | | | | Combustion | pollutant | s. Most | fuels | | | \ | | | emission | | | bon dioxide and lane. | te | L | House a satisfate a | | · | | | | | | of fuels | may also o | contain :
ulfur. | some | | | | | | | | | | | 1 [| Human | | ities and greenhouse gases | | | | | | | Carbon di | ioxide, w | | Carbon
monoxide | | | | s and odou
detected, ca | | | Ef | Rising sea levels | | | Carbon
dioxide | | man activities that increase co
ride levels include burning foss
and deforestation. | | | | | | Gases from burning fuels | monoxide, sulfu
dioxide and oxide
nitrogen. | | ur | Sulfur
dioxide and
oxides of
nitrogen | h | ımans | and a | piratory problems in
and acid rain which
the environment. | | | Extreme weather event severe storms | | s such as | | Methane | Human activities that increase methan
levels include raising livestock (for food
and using landfills (the decay of organi | | food) | | | | | Particulates | Solid pa
unb
hydrocarb
when bu | ourned
oons rele | eased | Particulates | Caus | _ | | nming and l | health | | Cł | Change in amount a
distribution of rain
nanges to distributi
Idlife species with
becoming extinc | fall
on of
some | _ | Climate
change | | matter released methane). There is evidence to suggest that human activities will cause the Earth's tmospheric temperature to increase and cause climate change. | | | | | | oxygen nitrogen | | Gas
Nitrogen | | Percentage ~80% | به | 979 | Pro | Algae and I | olants | | | | roduced the oxygen that is the atmosphere, through | | | | | | | | | |---|---------------------------------------|---|--|--|---------------------------|--|----------------|--|--------------|------------------------------|-------------------------|--|---|-----------------------|--|--|--------------------------------|--|----------------|--|--| | | | Oxygen | | ~20% | atmosphere | gases in the | Proportions of | | | | | photosynthesis. | | | | $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$ | | | | | | | | | Argon Carbon dioxide | | 0.93% | sphe | int | tion | Oxygen in | +ho | tho 5 | | Over the next billion years plants of gradually produce more oxygen. T | | | | | • | | | | | | | | | | 0.04% | re | Te - | s of | atmosph | | | rst pr | years ago. | | | increased to a level that enabled animals to evolve. | | | | | | | | Volcano
activity
1 st Billion
years | ago there
intens
volcar | illions of years ago there was intense volcanic activity This released gases (mainly CO ₂) that formed to early atmosphere and water vapour that condensed to form the oceans. | | | ille Editiis e | 1 | | How oxygen dioxide ompositi | carbo | on
eased | | | Reducing carbon
dioxide in the
atmosphere | Algo | ese | and plants e are made the remains | levels in
photos
Remain | n the atmosphere by absorbing it ynthesis. ns of biological matter falls to the | it for
e | | | | Other gases | Released
volcar
eruptio | nic | Nitroge
release
building
atmosp | en was also
d, gradually
g up in the
where. Small
tions of ammonia | Earth's early authosphere | | | evolution
atmosp | of t
here | he | | | Formation of
sedimentary rock
and fossil fuels | s oj | f b
itti
er i | piological
er, formed
millions of
years | and the
coal, oi
The sec | e huge pressures turned them int
il, natural gas and sedimentary ro
dimentary rocks contain carbon | to | | | | | | | and me | thane also
ed. | ď | | C | hemistry | | he | | | | | H | Greenhou | se gase | n years plants evolved to more oxygen. This gradually that enabled animals to ese gradually reduced the carbon dioxiels in the atmosphere by absorbing it footosynthesis. In a sof biological matter falls to the tom of oceans. Over millions of years ers of sediment settled on top of them at the huge pressures turned them into l., oil, natural gas and sedimentary rock esedimentary rocks contain carbon aide from the biological matter. Examples of greenhouse gases the maintain temperatures on Earth is order to support life Radiation from the Sun enters the Earth's atmosphere and reflects of the Earth. Some of this radiation re-radiated back by the atmosphere to the Earth, warming up the globutemperature. | | | | | Reducing
carbon
dioxide in | When oceans fo | This formed carbonate precipitates, forming sediments. This reduced | | | | Common | | | | ere | | | O ₂ and meth
as greenhoι
gases | enhouse | | Carbon diox
water vapo
and metha | ur | maintain temperatures on Earth in | | | | | the
atmosphere | dissolved | into it | dioxide
atmosp | | | | | spheric
utants | | Ca | rbor | n fo | ootprints | \
G | | | | Examples of greenhouse gases that maintain temperatures on Earth in order to support life Radiation from the Sun enters the Earth's atmosphere and reflects of of the Earth. Some of this radiation | | | | | | Source o | of atmos | pheric | Prop | | anc | d effe | ects of itants | ga | ases er
ycle of
can be | nitted
a pro
redu | d o
odu
iced | t of greenhouse
ver the full life
uct/event. This
d by reducing
oon dioxide and | Global climate change | | The greenho
effect | use o | of the Earth. Some of this radiation
re-radiated back by the atmosph
to the Earth, warming up the glo | ion is
here | | | | of fuels | Combustion pollutar of fuels may also | | - | | | / | \ | | | | meth | | ane. | | | Human activities and greenhouse gases | | | | | | | | Carbon | | | Carbon
monoxide | I | | | rless and odd | | - 1 1 | | Eff | fects of climate cha | | | Carbon
dioxide | | de levels include burning fossil fu | | | | | Gases from
burning fuels | | our, carb
oxide, su | | Sulfur | | | | | | _ | | | Rising sea levels | | 4 | | Humo | | ane | | | | burning rueis | dioxide
ni | and oxi
itrogen. | | dioxide and oxides of nitrogen | I | numa | ns a | iratory proble
nd acid rain v
he environme | vhich | | Exti | | ne weather events
severe storms
Change in amount a | | - | Methane | | years plants evolved to ore oxygen. This gradually hat enabled animals to e gradually reduced the carbon diox in the atmosphere by absorbing it osynthesis. ains of biological matter falls to the om of oceans. Over millions of years is of sediment settled on top of them the huge pressures turned them into oil, natural gas and sedimentary rockedimentary rocks contain carbon de from the biological matter. Examples of greenhouse gases the maintain temperatures on Earth order to support life Radiation from the Sun enters the Earth's atmosphere and reflects of the Earth. Some of this radiation re-radiated back by the atmosphere to the Earth, warming up the globate the Earth, warming up the globate the Earth, warming in the series of the series include burning fossil fur and deforestation. Titles and greenhouse gases | · / | | | | Particulates | ur
hydrocai | particles
nburned
rbons re
purning j | leased | Particulates | Cau | ause global dimming and hed
problems in humans. | | | | th | ı | Ch | distribution of rains
anges to distribution
dlife species with s
becoming extinct | fall
on of
some | | Climate
change | (| e is evidence to suggest that hun
activities will cause the Earth's
spheric temperature to increase | | | |