High atom economy is A measure of the amount Atom economy = Relative formula mass of desired product from equation x 100 important or sustainable Sum of relative formula mass of all reactants from equation of starting materials that development and economic end up as useful products reasons What is the concentration of a solution that has 35.0g of Calculate the atom economy for making hydrogen solute in 0.5dm3 of solution? Concentration of a solution Concentration = amount (mol) by reacting zinc with hydrochloric acid: is the amount of solute per (mol/dm³) volume (dm3) 35/0.5 = 70 g/dm3 volume of solution Zn + 2HCl → ZnCl₂ + H₂ Atom economy M_r of $H_2 = 1 + 1 = 2$ $2NaOH(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(I)$ M_r of Zn + 2HCl = 65 + 1 + 1 + 35.5 + 35.5 = 138Using concentrations of solutions in mol/dm³ It takes 12.20cm3 of sulfuric acid to neutralise 24.00cm3 of If the volumes of sodium hydroxide solution, which has a concentration of (HT only, chemistry only) Atom economy = $\frac{2}{138} \times 100$ two solutions that 0.50mol/dm3. $=\frac{2}{138}\times 100 = 1.45\%$ react completely **AQA** are known and the Calculate the concentration of the sulfuric acid in mol/dm3: Titration concentrations of QUANTITATIVE This method is unlikely to be chosen as it has a one solution is 0.5 mol/dm3 x (24/1000) dm3 = 0.012 mol of NaOH low atom economy. **CHEMISTRY 2** known, the The equation shows that 2 mol of NaOH reacts with 1 mol of concentration of H₂SO₄, so the number of moles in 12.20cm³ of sulfuric acid is the other solution (0.012/2) = 0.006 mol of sulfuric acidHT only: can be calculated. 200g of calcium carbonate is heated. It decomposes to make calcium oxide Percentage Calculate the concentration of sulfuric acid in mol/dm3 and carbon dioxide. Calculate the theoretical mass of calcium oxide made. 0.006 mol x (1000/12.2) dm3 = 0.49mol/dm3 CaCO₃ → CaO + CO₃ M_r of $CaCO_3 = 40 + 12 + (16x3) = 100$ Use of amount of substance in Calculate the concentration of sulfuric acid in M, of CaO = 40 + 16 = 56 yield g/dm3: relation to volumes of gases 100g of CaCO₃ would make 56 g of CaO $H_2SO_4 = (2x1) + 32 + (4x16) = 98g$ (HT only, chemistry only) So 200g would make 112g $0.49 \times 98g = 48.2g/dm^3$ The reaction may not go to completion because it is Equal amounts of It is not always reversible. The volume of one mole of moles or gases occupy Yield is the possible to obtain the same volume any gas at room temperature No. of moles of gas = vol of gas (dm3) Some of the product may be lost when it is separated amount of the calculated under the same and pressure (20°C and 1 24dm³ product from the reaction mixture. amount of a conditions of atmospheric pressure) is 24 obtained Some of the reactants may react in ways different to product dm³ temperature and the expected reaction. pressure 6g of a hydrocarbon gas had a volume of 4.8 dm3. A piece of sodium metal is heated in What is the volume of 11.6 g of Percentage yield is chlorine gas. A maximum theoretical Calculate its molecular mass. butane (C₄H₁₀) gas at RTP? comparing the mass of 10g for sodium chloride was 1 mole = 24 dm3, so 4.8/24 = 0.2 mol amount of product $M_r: (4 \times 12) + (10 \times 1) = 58$ % Yield = Mass of product made x 100 calculated, but the actual yield was obtained as a Max. theoretical mass only 8g. $M_r = 6 / 0.2 = 30$ percentage of the 11.6/58 = 0.20 mol Calculate the percentage yield. better hope – brighter future Percentage yield = 8/10 x 100 = 80% Volume = $0.20 \times 24 = 4.8 \text{ dm}^3$ maximum theoretical amount If 6g = 0.2 mol, 1 mol equals 30 g | Nitrogen | | | Percentage | <i>a</i> 0 | Pr | Algae and | d nlante | | | roduced the oxygen
the atmosphere, th | | , | | | ter → glucose + oxygen | | | |---|---|---|--------------------------|---|---|----------------|---|--|---|--|--|-----------------------|---|---|--|---|--| | argon | | | - | ~80% | atmosphere | Proportions of | Algae alla | piants | 3 " | OW III | photosynthesis. | rougn | | 6CO ₂ | + 6H | $_{2}O \rightarrow C_{6}H_{12}O_{6} + 6O_{2}$ | | | | oxygen | | Oxygen ~20% Argon 0.93% | | sphe | tion | | Oxygen in the | | | | | Over the next billion years plants evolved to gradually produce more oxygen. This gradually | | | | | | nitrogen | | Carbon dioxide | | 0.04% | ere | s of | atmos | | | | oduced by algae 2.7
years ago. | billion | i | | | ore oxygen. This gradually that enabled animals to | | | Volcano
activity
1 st Billion
years | ago there
intens
volcar | This released gases (mainly CO ₂) that formed to early atmosphere and water vapour that condensed to form the oceans. | | | The Earth's ea | 7 | How oxyge Ho dioxid | w carb | oon
reased | | Reducing carbor dioxide in the atmosphere | Alg | ese | and plants are made the remains | level
phot
Rema | re gradually reduced the carbon dioxide is in the atmosphere by absorbing it for cosynthesis. ains of biological matter falls to the orm of oceans. Over millions of years is of sediment settled on top of them | | | Other gases | Released from building volcanic atmosp proport and me | | atmosphere. Small | | Earth's early atmosphere | | atmos | evolution of th
atmosphere
AQA GCSE | | | sedimentary rock | sedimentary rocks | | iological
er, formed
millions of
years | and the huge pressures turned them into coal, oil, natural gas and sedimentary rock contain carbon. | | | | | | | | | ere | (| hemistry of the | | of the | | | | | Greenhou | ıse ga | ases | | | Reducing
carbon
dioxide in | oceans fo | When the oceans formed, carbon dioxide the levels of carbon | | | Common | | | e | | CO ₂ and met
as greenho
gases | | | Carbon diox
water vapo
and metha | our maintain temperatures on Earth in | | | | | the
atmosphere | dissolved | d into it dioxide i atmosph | | | | | ospheric
utants | | Ca | | footprints | | | | | Radiation from the Sun enters the
Earth's atmosphere and reflects off | | | Atmospl | Atmospheric pollutants from fuels Prope | | | rties and effects of spheric pollutants | | | gases er
cycle of
can be | otal amount of greenhouse is emitted over the full life e of a product/event. This is be reduced by reducing sions of carbon dioxide and | | | | The greenho
effect | | | | | | | Combustion of fuels | pollutar
may also | | lost fuels | | | | | emissi | | | thane. | io | _ | Human | activ | activities and greenhouse gases | | | | | sulfur. Carbon Toxic, colourless and odourless monoxide gas. Not easily detected, can kill. | | • | | | | Effects of climate change | | | | Carbon
dioxide | Human activities that increase carbon dioxide levels include burning fossil fuels | | | | | | Gases from | | ur, carb
xide, su | | Sulfur | | | | | | | Rising sea levels | 5 | ┦ | | and deforestation. | | | | burning fuels | dioxide | dioxide and oxid
nitrogen. | | oxides of dioxide and | | | Cause respiratory problem
humans and acid rain wh
affects the environment | | | Extr | Extreme weather events such as severe storms Change in amount and | | | Methane | Human activities that increase methane levels include raising livestock (for food) and using landfills (the decay of organic matter released methane). | | | | Particulates | Solid particles and unburned | | | Particulates | Cause global dimming and health problems in humans. | | | ulth | change in amount and distribution of rainfall Changes to distribution of wildlife species with some becoming extinct | | | | Climate activities will change atmospheric temp | | ere is evidence to suggest that human
activities will cause the Earth's
nospheric temperature to increase and
cause climate change. | | | | argon | Gas Percentage ~80% | | | gases in the atmosphere | Prop | | | | | oduced the oxygen the
he atmosphere, throu
photosynthesis. | | | | \Rightarrow glucose + oxygen
\Rightarrow C ₆ H ₁₂ O ₆ + 6O ₂ | | |--------------|--|-----------------------------|---|------------------------------|---|--|---------------------------------|------------------------------------|---|---|--|---|---|--|--| | oxygen | | | ~20%
0.93%
0.04% | | Proportions of | | | Firs | t pro | duced by algae 2.7 bil
years ago. | lion | gradually prod | uce more | ars plants evolved to oxygen. This gradually enabled animals to | | | ago | Billions of years ago there was intense volcanic activity Released from volcanic eruptions This released gases (mainly CO ₂) that formed to early atmosphere and water vapour that condensed to form the oceans. Nitrogen was also released, gradually building up in the atmosphere. Small proportions of ammonia and methane also produced. | | The Earth's early atmosphere | C | How or dioxide do omposition of atmosph | erbon
lecreas
on and
of the | ed | | | The
out o
of
ma | se and plants se are made f the remains theological ther, formed r millions of | Remains
bottom
layers of
and the | radually reduced the carbon dioxic the atmosphere by absorbing it for thesis. s of biological matter falls to the of oceans. Over millions of years f sediment settled on top of them huge pressures turned them into , natural gas and sedimentary rock | | | | | | | Released from volcanic eruptions building up in the atmosphere. Small proportions of ammonia and methane also | | mosphere | Cl | AQA GC
hemistry of | SE
of the | <u> </u> | \ | ${ m CO}_2$ and metha | | Greenhou | dioxide | imentary rocks contain carbon
from the biological matter. | | oced
cark | When the oceans formed, carbon dioxide dissolved into it This formed carbonal precipitates, forming sediments. This reduct the levels of carbon dioxide in the | | | | Common atmospheric | | | | \ | as greenhous
gases | | | n | xamples of greenhouse gases tha
naintain temperatures on Earth in
order to support life | | | | pollutants f | pheric | Prope | rties and | l effe | | The to
gases
cycle
can | otal a
s emi
e of a
be re | mour
itted
prod | at of greenhouse over the full life uct/event. This do by reducing bon dioxide and | Global climate | | of
re | Radiation from the Sun enters the
arth's atmosphere and reflects of
the Earth. Some of this radiation
e-radiated back by the atmospher
o the Earth, warming up the globo
temperature. | | | | ıy also contair | - | | \ | \ | | | n | | nane. | | Human | activiti | tivities and greenhouse gases | | | Са | sulfur. Carbon dioxide, water vapour, carbon | | ioxide, water | | | Toxic, colourless and odou
gas. Not easily detected, co | | | Effects of climate change Rising sea levels | | ge | | | an activities that increase carbon
e levels include burning fossil fuel
and deforestation. | | | | monoxide, su
oxide and oxid
nitrogen. | ide, sulfur
nd oxides of | | | Cause respiratory problems
humans and acid rain whic
affects the environment. | | | | Extreme weather events such severe storms | | | | levels
and us | duman activities that increase methane
evels include raising livestock (for food)
and using landfills (the decay of organic | | | hyd | Solid particles and unburned hydrocarbons released when burning fuels. | | | Cause global dimming and hea | | | | | Cl | Change in amount and
distribution of rainfall
nanges to distribution
ldlife species with son
becoming extinct | of | | There a | matter released methane).
is evidence to suggest that humai
ctivities will cause the Earth's
pheric temperature to increase an
cause climate change. | | | | | | | | | bette | r hope – | - bria | hter t | uture | | | | | | | | - | | Natural resources and | resources | _ | Sterilising agents in chlorine, ozone an light. | I | | | able
iter | арргор | ter of an
riate quality
ntial for life | low I | evels o | nking water should have
of dissolved salts and
This is called potable | | |--|---|---|--|--|---|--|---------------|--|------------------------|------------------------|--|--|----------------|---|---|-----| | Earth's | warn | to provide
oth, shelter, | from agriculture provifood, clothing and fue | m agriculture provide: timber,
d, clothing and fuels. | | Usin
res
su
de | vater | | UK v | vater | with lo | wides water
w levels of | | nd/lak | vater collects in the d/lakes/rivers. To make potable an appropriate source is | | | resource | 1 - | nd transport
humans | Finite resources from oceans and atmosphe processed to provide 6 | re are | | Using the Earth's resources and sustainable development | Potable water | | | | dis
sub | dissolved
substances | | chosen, which is then passed through
filter beds and then sterilised. | | | | Chemisti
and | technic | earch and
lues improve
ultural and | These improvements products and improve | | | | Τ_ | | Desali | natio | fresh
on limi
salty/s | to occur is water is ited and ea water is for drinking | by us | sing lar
rse osn | e achieved by distillation or
rge membranes e.g.
mosis. These processes
ge amounts of energy. | | | resource | industr | ial processes | sustainability. | | _ | Using the E resources | | | | | | Waste w | ater t | treatn | ment | | | Plastics | Plastics Normally made using ethene from crude oil | | However, the raw material ethene can also be obtained from ethanol, which can be produced during fermentation. Industries are now starting to use a renewable crop for this process. | | | obtaining power water AQA GCSE I | r | | ethods of | rais (HI) | Waste
water | Produced j
urban lifes
and indus
process | tyles
trial | the e | se require treatment before us
environment. Sewage needs th
nic matter and harmful microb
oved. | he | | LCAS | Life cycl
assessment
carried ou
assess th
environme
impact o | ts are - Extraction and processing raw materials che - Manufacturing and packaging ental - Use and operation during | | | | Life cycle assessment and recycling | | | Alternative methods of | extracting metals (H1) | Sewage
treatment | Includes n
stages | | - Se
ef
- Ar
- Ae | creening and grit removal
edimentation to produce sludg
ffluent (liquid waste or sewage
naerobic digestion of sludge
erobic biological treatment of
ffluent. | e). | | Values | Allocatin
numerical v
to polluto
effects i | g
alues Value
int the e | judgments are allocated ffects of pollutants so LCA purely objective process. | \ is | | Ways of reducir | ng the | | | Metals ores | | These resource
limited | | are | Copper ores especially are becoming sparse. New ways extracting copper from low-gores are being developed. | | | | difficul | : | . , , , , | | | use of resour | ces | | \neg | Ph | ytomining | Plants abso | | tal | These plants are then harves and burned; their ash contain metal compounds. | | | | Reduce, reuse and recycle This strategy reduce limited reso | | egy reduces the use of
nited resources | | ces w | ore, reduces energy sources being es waste (landfill) and reduces tal impacts. | | | | | | Bacteria is used t | | | The metal compounds can be processed to obtain the metal | | | Limited raw materials materials, | | netals, glass, building
ls, plastics and clay
ceramics | etals, glass, building
s, plastics and clay
ceramics Most of the
comes from
materials fro | | ergy required for the lited resources. Ob the Earth by quarry mental impacts. | taining raw | | | Bio | oleaching | produce le
solutions the
metal com | at cont | tain | from it e.g. copper can be obtained from its compound displacement or electrolysis. | ls by | | | Reusing and recycling Metals can be recycled by melting and recycling recyc | | | | in be reused. They
e different glass pro
reused are recycled | ducts. Prod | | | | | | | | | | | | | -1 | | Natural resources and | resources | Sterilising agents include chlorine, ozone and UV light. | | | | appropr | er of an
iate quality
tial for life | low leve | drinking water should have Is of dissolved salts and s. This is called potable | | |---|---|---|-------------------------------------|---|------|------------------------|------------------------|----------------------------|--|-----------------------|---|--| | war | d to provide
mth, shelter, | n, shelter, | | | | | | with lo | w levels of ground/la | | er collects in the akes/rivers. To make potable appropriate source is | | | | and transport
r humans | Finite resources from a oceans and atmosphe processed to provide a materials. | re are | the Earth's rater Potable water | | | | sub | solved
stances
to occur is | chosen,
filter bed | which is then passed through ds and then sterilised. | | | techni
agri | search and
iques improve
cultural and
trial processes | These improvements products and improve sustainability. | | —— nt bh's —— | | | | fresh
limit
salty/se | ited and reverse | | be achieved by distillation or large membranes e.g. osmosis. These processes arge amounts of energy. | | | muuse | riai processes | However the raw mat | erial ethene | resources and | | | | | Waste w | ater trea | atment | | | using | Normally made using ethene from crude oil Normally made ethanol, which can be during fermentation. are now starting to us renewable crop for the | | rom
produced
ndustries
e a | obtaining potabl
water
AQA GCSE Using | | ethods of | tals (H1) | | Produced j
urban lifes
and indus
processe | tyles th | nese require treatment before used in
the environment. Sewage needs the
ganic matter and harmful microbes
moved. | | | assessmen
carried or
assess t
environm
impact | Life cycle assessments are carried out to assess the environmental impact of products Allocating numerical values They are assessed at these stages: - Extraction and processing raw materials - Manufacturing and packaging lifetime products - Disposal | | | resources 1 Life cycle assessment and recycling | d | Alternative methods of | extracting metals (HT) | | Includes n
stages | any - | Screening and grit removal Sedimentation to produce sludge and effluent (liquid waste or sewage). Anaerobic digestion of sludge Aerobic biological treatment of effluent. | | | Allocati
numerical
to pollut | products - Disposal Allocating numerical values to pollutant effects is difficult - Disposal Value judgments are allocated to the effects of pollutants so LCA is not a purely objective process. | | is | Ways of reducing the | | ì | | | These resources are
limited | | Copper ores especially are becoming sparse. New ways of extracting copper from low-grade ores are being developed. | | | | | | | use of resources | eing | | | | Plants abso | | These plants are then harvested and burned; their ash contains the metal compounds. | | | | limited resources used, redu | | | This, therefore, reduces energy sources being used, reduces waste (landfill) and reduces environmental impacts. | | | | | Bacteria is used to | | The metal compounds can be processed to obtain the metal | | | | materials, plastics and clay | | plastics and clay | | raw | | | | solutions the
metal com | at contain | from it e.g. copper can be obtained from its compounds by displacement or electrolysis. | | | | | be recycled by melting
asting/reforming | melted to ma | can be reused. They are crus
ake different glass products. F
be reused are recycled. | | | | | | | | | | - | | Natural resources and | I | Sterilising agents i chlorine, ozone ar light. | I . | | table
ater | | | low levels | inking water should have of dissolved salts and This is called potable | | |-----------------------------|--------------------|---|---|---|---|------------------------|------------------------|---------------------|----------|--|---|-----| | Earth's resource | | from agriculture provi
food, clothing and fue
Finite resources from | els. | Using reso sus | water | UK | water | | | ground/la
water an a | r collects in the
kes/rivers. To make potable
appropriate source is | | | | | oceans and atmosphe processed to provide | ere are | Using the Earth's resources and sustainable development | Potable water | | | | | | which is then passed through and then sterilised. | | | Chemistr
and
resource | , | These improvements products and improve sustainability. | | Using the B | | Desal | ination | | | by using la
reverse os | e achieved by distillation or
arge membranes e.g.
smosis. These processes
rge amounts of energy. | | | | | Hawayay tha yay yaa | torial athena | resources | s and - | | | | Waste wa | ter treat | ment | | | Plastics | | However, the raw mar
can also be obtained to
ethanol, which can be
during fermentation.
are now starting to us
renewable crop for th | from
e produced
Industries
se a | obtaining p
wate
AQA GCSE | r | ethods of | stals (HT) | Waste
water | | the
orga | ese require treatment before u
environment. Sewage needs t
anic matter and harmful micro
noved. | the | | LCAS | | materials - Manufacturing and packagi - Use and operation during lifetime | Attraction and processing raw naterials Itanufacturing and packaging se and operation during fetime isposal e judgments are allocated to effects of pollutants so LCA is a purely objective process. | | es 1
vcle
ent and
ing | Alternative methods of | extracting metals (HT) | Sewage
treatment | | Screening and grit removal Sedimentation to produce sludge and effluent (liquid waste or sewage). Anaerobic digestion of sludge Aerobic biological treatment of effluent. | | | | Values | | - Disposal Value judgments are allocated the effects of pollutants so LC. | | | | | Metals ores | | | | Copper ores especially are becoming sparse. New ways extracting copper from lowores are being developed. | | | | | not a purely objective process | | | Ways of reducing the use of resources ore, reduces energy sources being | | Phytomining | | | | These plants are then harve and burned; their ash conta metal compounds. | | | | reuse and
cycle | | This, therefor
used, reduce
environment | | | | | | | | The metal compounds can be processed to obtain the metal | | | Limited raw materials | | | comes from I
materials fro | | energy required for these processes
limited resources. Obtaining raw
om the Earth by quarrying and mining
ronmental impacts. | | Biol | eaching | | | from it e.g. copper can be
obtained from its compound
displacement or electrolysis | | | Reusing a | nd recycling | | Glass bottles
melted to ma | can be reused. They
ake different glass pro
be reused are recycle | oducts. Produ | | | | | | | | | | | | 1 | hotter bene | | | | | | | | |